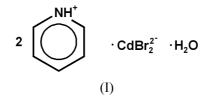
Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui Zhang^{a,b} and Liang Fang^{a,b}

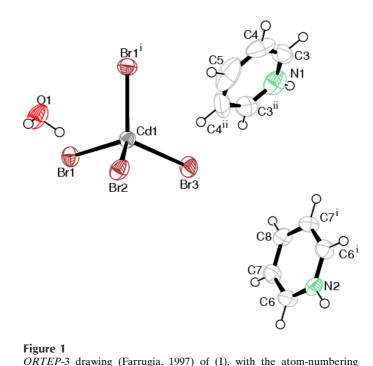
^aState Key Laboratory of Advanced Technology, for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China, and ^bInstitut für Anorganische Chemie, RWTH Aachen, Professor-Pirlet-Straße 1, 52056 Aachen, Germany

Key indicators


Single-crystal X-ray study T = 223 KMean $\sigma(\text{C-C}) = 0.007 \text{ Å}$ R factor = 0.030 wR factor = 0.077Data-to-parameter ratio = 23.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(pyridinium) tetrabromocadmate(II) monohydrate


The title compound, $(C_5H_6N)_2[CdBr_4]\cdot H_2O$, consists of discrete anions, cations and solvent water molecules. Both pyridinium cations and the tetrabromocadmate anion possess a crystallographically imposed mirror symmetry. The solvent water molecule and one pyridinium cation form intermolecular $N-H\cdots O$ and $O-H\cdots Br$ hydrogen bonds, giving a three-dimensional hydrogen-bonded structure.

Received 15 October 2004 Accepted 16 November 2004 Online 11 December 2004

Experimental

Pyridine (0.010 mol, 0.791 g) and $CdBr_2$ (0.005 mol, 1.3601 g) were dissolved in dilute HBr (10 ml, 1 *M*) and the resultant solution was evaporated slowly at *ca* 323 K. The title compound was obtained as prismatic colourless crystals after several days.

scheme. Displacement ellipsoids are drawn at the 50% probability level

and H atoms have been assigned arbitrary radii. [Symmetry codes: (i) x,

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

 $\frac{1}{2} - y, z; ii) x, \frac{3}{2} - y, z.$]

metal-organic papers

Mo $K\alpha$ radiation

reflections

 $\theta = 2.1 - 28.3^{\circ}$ $\mu = 10.35 \text{ mm}^{-1}$

T = 223 (2) K

 $R_{\rm int} = 0.060$

 $\theta_{\rm max} = 28.3^{\circ}$ $h = -19 \rightarrow 19$

 $k = -12 \rightarrow 12$

 $l = -17 \rightarrow 17$

Prism, colourless

 $0.15 \times 0.12 \times 0.10 \ \mathrm{mm}$

2299 independent reflections

1776 reflections with $I > 2\sigma(I)$

Cell parameters from 2299

Crystal data

(C₅H₆N)₂[CdBr₄]·H₂O $M_r = 610.27$ Orthorhombic, Pnma a = 14.951 (2) Å b = 9.1564 (15) Åc = 12.815(2) Å V = 1754.3 (5) Å² Z = 4 $D_x = 2.311 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEX CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.234, T_{\max} = 0.355$ 22963 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.077$ S = 1.10 2299 reflections 100 parameters H atoms treated by a mixture of independent and constrained refinement	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0272P)^{2} + 2.3887P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.66 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.66 \text{ e} \text{ Å}^{-3}$
independent and constrained refinement	
refinement	

Table 1

Selected geometric parameters (Å, °).

Cd1-Br1 Cd1-Br3	2.5736 (6) 2.5838 (9)	Cd1-Br2	2.5983 (9)
Br1 ⁱ -Cd1-Br1	106.84 (3)	Br1-Cd1-Br2	108.188 (18)
Br1-Cd1-Br3	114.474 (19)	Br3-Cd1-Br2	104.38 (3)

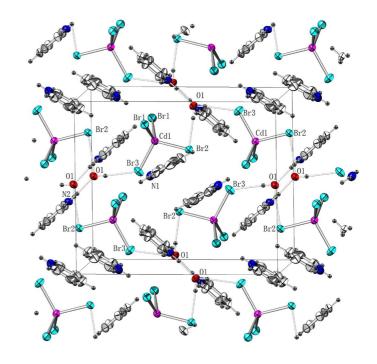

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2···O1 ⁱⁱ	0.87	1.80	2.669 (7)	176
O1−H9···Br3 ⁱⁱⁱ	0.86 (8)	2.50 (8)	3.365 (6)	175 (7)
$O1 - H10 \cdots Br2$	0.90 (9)	2.36 (9)	3.263 (6)	174 (8)

Symmetry codes: (ii) x, y, z - 1; (iii) $\frac{1}{2} + x, y, \frac{3}{2} - z$.

H atoms attached to C and N were constrained to an ideal geometry, with C-H and N-H distances of 0.94 and 0.87 Å,

Figure 2

Fig. 2. The crystal packing, viewed approximately down the b axis, showing the hydrogen-bonded network (dashed lines) formed by atom O1 associated with N2, Br2 and Br3.

respectively, and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$. Water H atoms were initially located in a difference Fourier map and their positions were refined freely along with an isotropic displacement parameter.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

HZ thanks DAAD for a scholarship and the authors also thank Mr Kruse for the data collection.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. University of Göttingen, Germany.